Maple 2018.2 Integration Test Results
on the problems in "4 Trig functions/4.6 Cosecant"
Test results for the 23 problems in 44.6 .0 (a csc)^m (b trg)^n.txt"
Problem 7: Result more than twice size of optimal antiderivative.

$$
\int(c \csc (b x+a))^{7 / 2} \mathrm{~d} x
$$

Optimal(type 4, 119 leaves, 4 steps):

$$
-\frac{2 c \cos (b x+a)(c \csc (b x+a))^{5 / 2}}{5 b}-\frac{6 c^{3} \cos (b x+a) \sqrt{c \csc (b x+a)}}{5 b}+\frac{6 c^{4} \sqrt{\sin \left(\frac{a}{2}+\frac{\pi}{4}+\frac{b x}{2}\right)^{2}} \operatorname{EllipticE}\left(\cos \left(\frac{a}{2}+\frac{\pi}{4}+\frac{b x}{2}\right), \sqrt{2}\right)}{5 \sin \left(\frac{a}{2}+\frac{\pi}{4}+\frac{b x}{2}\right) b \sqrt{c \csc (b x+a)} \sqrt{\sin (b x+a)}}
$$

Result(type 4, 1084 leaves):
$\frac{1}{5 b}(\sqrt{2}$
$-6 \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)+\cos (b x+a)-1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (b x+a))}{\sin (b x+a)}}$ EllipticE $($
$\left.\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}}, \frac{\sqrt{2}}{2}\right) \cos (b x+a)^{3}$
$+3 \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)+\cos (b x+a)-1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (b x+a))}{\sin (b x+a)}}$ EllipticF $($
$\left.\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}}, \frac{\sqrt{2}}{2}\right) \cos (b x+a)^{3}$
$-6 \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)+\cos (b x+a)-1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (b x+a))}{\sin (b x+a)}}$ EllipticE
$\left.\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}}, \frac{\sqrt{2}}{2}\right) \cos (b x+a)^{2}$
$+3 \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)+\cos (b x+a)-1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (b x+a))}{\sin (b x+a)}}$ EllipticF $($
$\left.\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}}, \frac{\sqrt{2}}{2}\right) \cos (b x+a)^{2}$
$+6 \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)+\cos (b x+a)-1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (b x+a))}{\sin (b x+a)}}$ EllipticE $($
$\left.\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}}, \frac{\sqrt{2}}{2}\right) \cos (b x+a)$

$$
\begin{aligned}
& -3 \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)+\cos (b x+a)-1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (b x+a))}{\sin (b x+a)}} \text { EllipticF }\left(\begin{array}{l}
\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}
\end{array} \sqrt{\frac{\sqrt{2}}{2}}\right) \cos (b x+a) \\
& +6 \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)+\cos (b x+a)-1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (b x+a))}{\sin (b x+a)}} \text { EllipticE }(\\
& \left.\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}}, \frac{\sqrt{2}}{2}\right) \\
& -3 \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)+\cos (b x+a)-1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (b x+a))}{\sin (b x+a)}} \text { EllipticF } \\
& \left.\left.\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}}, \frac{\sqrt{2}}{2}\right)+3 \sqrt{2} \cos (b x+a)^{2}-\sqrt{2} \cos (b x+a)-3 \sqrt{2}\right)\left(\frac{c}{\sin (b x+a)}\right)
\end{aligned}
$$

Problem 8: Result more than twice size of optimal antiderivative.

$$
\int(c \csc (b x+a))^{5 / 2} \mathrm{~d} x
$$

Optimal(type 4, 95 leaves, 3 steps):

$$
-\frac{2 c \cos (b x+a)(c \csc (b x+a))^{3 / 2}}{3 b}-\frac{2 c^{2} \sqrt{\sin \left(\frac{a}{2}+\frac{\pi}{4}+\frac{b x}{2}\right)^{2}} \operatorname{EllipticF}\left(\cos \left(\frac{a}{2}+\frac{\pi}{4}+\frac{b x}{2}\right), \sqrt{2}\right) \sqrt{c \csc (b x+a)} \sqrt{\sin (b x+a)}}{3 \sin \left(\frac{a}{2}+\frac{\pi}{4}+\frac{b x}{2}\right) b}
$$

Result(type 4, 326 leaves):

$$
\frac{1}{3 b \sin (b x+a)^{3}}(\sqrt{2}(-1+\cos (b x
$$

$$
+a))^{2}\left(\mathrm{I} \sqrt{\frac{-\mathrm{I}(-1+\cos (b x+a))}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)+\cos (b x+a)-1)}{\sin (b x+a)}} \sin (b x\right.
$$

$$
+a) \text { EllipticF }\left(\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}}, \frac{\sqrt{2}}{2}\right) \cos (b x+a)
$$

$$
+\mathrm{I} \sqrt{\frac{-\mathrm{I}(-1+\cos (b x+a))}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)+\cos (b x+a)-1)}{\sin (b x+a)}} \sin (b x
$$

$$
\left.\left.+a \text {) EllipticF }\left(\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}}, \frac{\sqrt{2}}{2}\right)-\sqrt{2} \cos (b x+a)\right)(\cos (b x+a)+1)^{2}\left(\frac{c}{\sin (b x+a)}\right)^{5 / 2}\right)
$$

Problem 9: Result more than twice size of optimal antiderivative.

$$
\int(c \csc (b x+a))^{3 / 2} \mathrm{~d} x
$$

Optimal(type 4, 95 leaves, 3 steps):

$$
-\frac{2 c \cos (b x+a) \sqrt{c \csc (b x+a)}}{b}+\frac{2 c^{2} \sqrt{\sin \left(\frac{a}{2}+\frac{\pi}{4}+\frac{b x}{2}\right)^{2}} \text { EllipticE }\left(\cos \left(\frac{a}{2}+\frac{\pi}{4}+\frac{b x}{2}\right), \sqrt{2}\right)}{\sin \left(\frac{a}{2}+\frac{\pi}{4}+\frac{b x}{2}\right) b \sqrt{c \csc (b x+a)} \sqrt{\sin (b x+a)}}
$$

Result(type 4, 532 leaves):
$-\frac{1}{b}(\sqrt{2}($

$$
-2 \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)+\cos (b x+a)-1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (b x+a))}{\sin (b x+a)}} \text { EllipticE }
$$

$$
\left.\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}}, \frac{\sqrt{2}}{2}\right) \cos (b x+a)
$$

$$
+\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)+\cos (b x+a)-1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (b x+a))}{\sin (b x+a)}} \text { EllipticF }
$$

$$
\left.\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}}, \frac{\sqrt{2}}{2}\right) \cos (b x+a)
$$

$$
-2 \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)+\cos (b x+a)-1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (b x+a))}{\sin (b x+a)}} \text { EllipticE }
$$

$$
\left.\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}}, \frac{\sqrt{2}}{2}\right)
$$

$+\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)+\cos (b x+a)-1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (b x+a))}{\sin (b x+a)}}$ EllipticF $($

$$
\left.\left.\left.\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}}, \frac{\sqrt{2}}{2}\right)+\sqrt{2}\right)\left(\frac{c}{\sin (b x+a)}\right)^{3 / 2} \sin (b x+a)\right)
$$

Problem 10: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{(c \csc (b x+a))^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 97 leaves, 3 steps):

$$
-\frac{2 \cos (b x+a)}{5 b c(c \csc (b x+a))^{3 / 2}}-\frac{6 \sqrt{\sin \left(\frac{a}{2}+\frac{\pi}{4}+\frac{b x}{2}\right)^{2}} \text { EllipticE }\left(\cos \left(\frac{a}{2}+\frac{\pi}{4}+\frac{b x}{2}\right), \sqrt{2}\right)}{5 \sin \left(\frac{a}{2}+\frac{\pi}{4}+\frac{b x}{2}\right) b c^{2} \sqrt{c \csc (b x+a)} \sqrt{\sin (b x+a)}}
$$

Result(type 4, 562 leaves):

$$
\begin{aligned}
& -\frac{1}{5 b\left(\frac{c}{\sin (b x+a)}\right)^{5 / 2} \sin (b x+a)^{3}}\left(\sqrt { 2 } \left(6 \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)+\cos (b x+a)-1)}{\sin (b x+a)}}\right.\right. \\
& \sqrt{\frac{-\mathrm{I}(-1+\cos (b x+a))}{\sin (b x+a)}} \text { EllipticE }\left(\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}}, \frac{\sqrt{2}}{2}\right) \cos (b x+a) \\
& -3 \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)+\cos (b x+a)-1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (b x+a))}{\sin (b x+a)}} \text { EllipticF }(\\
& \left.\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}}, \frac{\sqrt{2}}{2}\right) \cos (b x+a) \\
& +6 \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)+\cos (b x+a)-1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (b x+a))}{\sin (b x+a)}} \text { EllipticE } \\
& \left.\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}}, \frac{\sqrt{2}}{2}\right) \\
& -3 \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)+\cos (b x+a)-1)}{\sin (b x+a)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (b x+a))}{\sin (b x+a)}} \text { EllipticF } \\
& \left.\left.\left.\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (b x+a)-\cos (b x+a)+1)}{\sin (b x+a)}}, \frac{\sqrt{2}}{2}\right)-\sqrt{2} \cos (b x+a)^{3}+4 \sqrt{2} \cos (b x+a)-3 \sqrt{2}\right)\right)
\end{aligned}
$$

Problem 11: Unable to integrate problem.

$$
\int \frac{1}{\csc (b x+a)^{2 / 3}} \mathrm{~d} x
$$

Optimal(type 5, 43 leaves, 2 steps):

$$
\frac{3 \cos (b x+a) \text { hypergeom }\left(\left[\frac{1}{2}, \frac{5}{6}\right],\left[\frac{11}{6}\right], \sin (b x+a)^{2}\right)}{5 b \csc (b x+a)^{5} / 3 \sqrt{\cos (b x+a)^{2}}}
$$

Result(type 8, 148 leaves):

$$
-\frac{3 \mathrm{I}^{1 / 3}}{4 b\left(\frac{\mathrm{I} \mathrm{e}^{\mathrm{I}(b x+a)}}{\left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)^{2}-1}\right)^{2 / 3}}+\frac{\left(\int-\frac{2}{\left(-\left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)^{2}\left(\left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)^{2}-1\right)\right)^{1 / 3}} \mathrm{~d} x\right) 2^{1 / 3}\left(-\left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)^{2}\left(\left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)^{2}-1\right)\right)^{1 / 3}}{2\left(\frac{\mathrm{Ie}^{\mathrm{I}(b x+a)}}{\left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)^{2}-1}\right)^{2 / 3}\left(\left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)^{2}-1\right)}
$$

Problem 12: Unable to integrate problem.

$$
\int \frac{1}{(c \csc (b x+a))^{2 / 3}} \mathrm{~d} x
$$

Optimal(type 5, 46 leaves, 2 steps):

$$
\frac{3 c \cos (b x+a) \text { hypergeom }\left(\left[\frac{1}{2}, \frac{5}{6}\right],\left[\frac{11}{6}\right], \sin (b x+a)^{2}\right)}{5 b(c \csc (b x+a))^{5 / 3} \sqrt{\cos (b x+a)^{2}}}
$$

Result(type 8, 156 leaves):

$$
-\frac{3 \mathrm{I}^{1 / 3}}{4 b\left(\frac{\mathrm{I} c \mathrm{e}^{\mathrm{I}(b x+a)}}{\left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)^{2}-1}\right)^{2 / 3}}+\frac{\left(\int-\frac{2}{\left(-c^{2}\left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)^{2}\left(\left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)^{2}-1\right)\right)^{1 / 3}} \mathrm{~d} x\right) 2^{1 / 3}\left(-c^{2}\left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)^{2}\left(\left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)^{2}-1\right)\right)^{1 / 3}}{2\left(\frac{\mathrm{I} c \mathrm{e}^{\mathrm{I}(b x+a)}}{\left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)^{2}-1}\right)^{2 / 3}\left(\left(\mathrm{e}^{\mathrm{I}(b x+a)}\right)^{2}-1\right)}
$$

Problem 13: Result more than twice size of optimal antiderivative.

$$
\int\left(\csc (x)^{2}\right)^{7 / 2} \mathrm{~d} x
$$

Optimal(type 3, 36 leaves, 5 steps):

$$
-\frac{5 \operatorname{arcsinh}(\cot (x))}{16}-\frac{5 \cot (x)\left(\csc (x)^{2}\right)^{3 / 2}}{24}-\frac{\cot (x)\left(\csc (x)^{2}\right)^{5 / 2}}{6}-\frac{5 \cot (x) \sqrt{\csc (x)^{2}}}{16}
$$

Result(type 3, 100 leaves):
$-\frac{1}{96}\left(\sqrt{4}\left(15 \cos (x)^{6} \ln \left(-\frac{-1+\cos (x)}{\sin (x)}\right)+15 \cos (x)^{5}-45 \cos (x)^{4} \ln \left(-\frac{-1+\cos (x)}{\sin (x)}\right)-40 \cos (x)^{3}+45 \cos (x)^{2} \ln \left(-\frac{-1+\cos (x)}{\sin (x)}\right)+33 \cos (x)\right.\right.$

$$
\left.\left.-15 \ln \left(-\frac{-1+\cos (x)}{\sin (x)}\right)\right) \sin (x)\left(-\frac{1}{\cos (x)^{2}-1}\right)^{7 / 2}\right)
$$

Problem 14: Result more than twice size of optimal antiderivative.

$$
\int\left(\csc (x)^{2}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 16 leaves, 3 steps):

$$
-\frac{\operatorname{arcsinh}(\cot (x))}{2}-\frac{\cot (x) \sqrt{\csc (x)^{2}}}{2}
$$

Result(type 3, 51 leaves):

$$
-\frac{\sqrt{4}\left(\cos (x)^{2} \ln \left(-\frac{-1+\cos (x)}{\sin (x)}\right)+\cos (x)-\ln \left(-\frac{-1+\cos (x)}{\sin (x)}\right)\right) \sin (x)\left(-\frac{1}{\cos (x)^{2}-1}\right)^{3 / 2}}{4}
$$

Problem 18: Result more than twice size of optimal antiderivative.

$$
\int\left(a \csc (x)^{3}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 4, 78 leaves, 5 steps):

$$
-\frac{10 a \cos (x) \sqrt{a \csc (x)^{3}}}{21}-\frac{2 a \cot (x) \csc (x) \sqrt{a \csc (x)^{3}}}{7}-\frac{10 a \sqrt{\sin \left(\frac{\pi}{4}+\frac{x}{2}\right)^{2}} \operatorname{EllipticF}\left(\cos \left(\frac{\pi}{4}+\frac{x}{2}\right), \sqrt{2}\right) \sin (x)^{3 / 2} \sqrt{a \csc (x)^{3}}}{21 \sin \left(\frac{\pi}{4}+\frac{x}{2}\right)}
$$

Result(type 4, 399 leaves):
$-\frac{1}{168 \sin (x)^{3}}\left(\sqrt{8}(\cos (x)+1)^{2}(-1\right.$
$+\cos (x))^{2}\left(5 \mathrm{I} \sqrt{2} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)-\cos (x)+1)}{\sin (x)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)+\cos (x)-1)}{\sin (x)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (x))}{\sin (x)}} \operatorname{EllipticF}\left(\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)-\cos (x)+1)}{\sin (x)}}\right.\right.$, $\left.\frac{\sqrt{2}}{2}\right) \cos (x)^{3} \sin (x)$
$+5 \mathrm{I} \sqrt{2} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)-\cos (x)+1)}{\sin (x)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)+\cos (x)-1)}{\sin (x)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (x))}{\sin (x)}}$ EllipticF $\left(\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)-\cos (x)+1)}{\sin (x)}}\right.$, $\left.\frac{\sqrt{2}}{2}\right) \cos (x)^{2} \sin (x)$
$-5 \mathrm{I} \sqrt{2} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)-\cos (x)+1)}{\sin (x)}} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)+\cos (x)-1)}{\sin (x)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (x))}{\sin (x)}}$ EllipticF $\left(\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)-\cos (x)+1)}{\sin (x)}}\right.$, $\left.\frac{\sqrt{2}}{2}\right) \cos (x) \sin (x)$
$-5 I \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)-\cos (x)+1)}{\sin (x)}} \sqrt{2} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)+\cos (x)-1)}{\sin (x)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (x))}{\sin (x)}}$ EllipticF $\left(\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)-\cos (x)+1)}{\sin (x)}}\right.$, $\left.\left.\left.\frac{\sqrt{2}}{2}\right) \sin (x)-10 \cos (x)^{3}+16 \cos (x)\right)\left(-\frac{2 a}{\sin (x)\left(\cos (x)^{2}-1\right)}\right)^{3 / 2}\right)$

Problem 19: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(a \csc (x)^{3}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 86 leaves, 5 steps):

$$
-\frac{14 \cos (x)}{45 a \sqrt{a \csc (x)^{3}}}-\frac{14 \sqrt{\sin \left(\frac{\pi}{4}+\frac{x}{2}\right)^{2}} \text { EllipticE }\left(\cos \left(\frac{\pi}{4}+\frac{x}{2}\right), \sqrt{2}\right)}{15 \sin \left(\frac{\pi}{4}+\frac{x}{2}\right) a \sin (x)^{3} / 2 \sqrt{a \csc (x)^{3}}}-\frac{2 \cos (x) \sin (x)^{2}}{9 a \sqrt{a \csc (x)^{3}}}
$$

Result(type 4, 376 leaves):
$-\frac{1}{45\left(-\frac{2 a}{\sin (x)\left(\cos (x)^{2}-1\right)}\right)^{3 / 2} \sin (x)^{5}}\left(\sqrt{8}\left(42 \sqrt{\frac{-I(I \sin (x)+\cos (x)-1)}{\sin (x)}} \sqrt{2} \sqrt{\frac{-I(I \sin (x)-\cos (x)+1)}{\sin (x)}} \sqrt{\frac{-I(-1+\cos (x))}{\sin (x)}}\right.\right.$
EllipticE $\left(\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)-\cos (x)+1)}{\sin (x)}}, \frac{\sqrt{2}}{2}\right) \cos (x)$
$-21 \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)+\cos (x)-1)}{\sin (x)}} \sqrt{2} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)-\cos (x)+1)}{\sin (x)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (x))}{\sin (x)}}$ EllipticF $\left(\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)-\cos (x)+1)}{\sin (x)}}\right.$,
$\left.\frac{\sqrt{2}}{2}\right) \cos (x)$
$+42 \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)+\cos (x)-1)}{\sin (x)}} \sqrt{2} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)-\cos (x)+1)}{\sin (x)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (x))}{\sin (x)}}$ EllipticE $\left(\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)-\cos (x)+1)}{\sin (x)}}, \frac{\sqrt{2}}{2}\right)$
$-21 \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)+\cos (x)-1)}{\sin (x)}} \sqrt{2} \sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)-\cos (x)+1)}{\sin (x)}} \sqrt{\frac{-\mathrm{I}(-1+\cos (x))}{\sin (x)}}$ EllipticF $\left(\sqrt{\frac{-\mathrm{I}(\mathrm{I} \sin (x)-\cos (x)+1)}{\sin (x)}}, \frac{\sqrt{2}}{2}\right)$
$\left.\left.+10 \cos (x)^{5}-34 \cos (x)^{3}+66 \cos (x)-42\right)\right)$

Problem 23: Unable to integrate problem.

$$
\int(a \csc (f x+e))^{m}(b \csc (f x+e))^{n} \mathrm{~d} x
$$

Optimal(type 5, 81 leaves, 3 steps):

$$
\frac{a \cos (f x+e)(a \csc (f x+e))^{-1+m}(b \csc (f x+e))^{n} \text { hypergeom }\left(\left[\frac{1}{2}, \frac{1}{2}-\frac{m}{2}-\frac{n}{2}\right],\left[\frac{3}{2}-\frac{m}{2}-\frac{n}{2}\right], \sin (f x+e)^{2}\right)}{f(1-m-n) \sqrt{\cos (f x+e)^{2}}}
$$

Result(type 8, 23 leaves):

$$
\int(a \csc (f x+e))^{m}(b \csc (f x+e))^{n} \mathrm{~d} x
$$

Test results for the 19 problems in "4.6.1.2 (d csc)^n (a+b csc)^m.txt"
Problem 4: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sin (x)^{4}}{a+a \csc (x)} \mathrm{d} x
$$

Optimal (type 3, 58 leaves, 7 steps):

$$
\frac{15 x}{8 a}+\frac{4 \cos (x)}{a}-\frac{4 \cos (x)^{3}}{3 a}-\frac{15 \cos (x) \sin (x)}{8 a}-\frac{5 \cos (x) \sin (x)^{3}}{4 a}+\frac{\cos (x) \sin (x)^{3}}{a+a \csc (x)}
$$

Result(type 3, 184 leaves):

$$
\begin{aligned}
& \frac{7 \tan \left(\frac{x}{2}\right)^{7}}{4 a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{4}}+\frac{2 \tan \left(\frac{x}{2}\right)^{6}}{a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{4}}+\frac{15 \tan \left(\frac{x}{2}\right)^{5}}{4 a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{4}}+\frac{10 \tan \left(\frac{x}{2}\right)^{4}}{a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{4}}-\frac{34 \tan \left(\frac{x}{2}\right)^{2}}{4 a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{4}}+\frac{15 \tan \left(\frac{x}{2}\right)^{3}}{3 a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{4}} \\
& -\frac{7 \tan \left(\frac{x}{2}\right)}{4 a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{4}}+\frac{10}{3 a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{4}}+\frac{15 \arctan \left(\tan \left(\frac{x}{2}\right)\right)}{4 a}+\frac{2}{a\left(\tan \left(\frac{x}{2}\right)+1\right)}
\end{aligned}
$$

Problem 5: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{a+a \csc (x)} \mathrm{d} x
$$

Optimal(type 3, 20 leaves, 2 steps):

$$
-2 \arctan \left(\frac{\cot (x) \sqrt{a}}{\sqrt{a+a \csc (x)}}\right) \sqrt{a}
$$

Result(type 3, 198 leaves):

$$
\begin{aligned}
& -\frac{1}{2(-1+\cos (x)-\sin (x))}\left(\sqrt { 2 } \sqrt { \frac { a (1 + \operatorname { s i n } (x)) } { \operatorname { s i n } (x) } } \operatorname { s i n } (x) \sqrt { - \frac { - 1 + \operatorname { c o s } (x) } { \operatorname { s i n } (x) } } \left(\ln \left(-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}\right)\right.\right. \\
& \left.\quad+4 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}+1\right)+4 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}-1\right)+\ln \left(-\frac{\sqrt{\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}\right)\right)
\end{aligned}
$$

Problem 6: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{a+a \csc (x)}} \mathrm{d} x
$$

Optimal(type 3, 47 leaves, 5 steps):

$$
-\frac{2 \arctan \left(\frac{\cot (x) \sqrt{a}}{\sqrt{a+a \csc (x)}}\right)}{\sqrt{a}}+\frac{\arctan \left(\frac{\cot (x) \sqrt{a} \sqrt{2}}{2 \sqrt{a+a \csc (x)}}\right) \sqrt{2}}{\sqrt{a}}
$$

Result(type 3, 220 leaves):

$$
\begin{aligned}
& \frac{1}{4 \sqrt{\frac{a(1+\sin (x))}{\sin (x)}} \sin (x) \sqrt{-\frac{-1+\cos (x)}{\sin (x)}}}\left(\sqrt { 2 } (- 1 + \operatorname { c o s } (x) - \operatorname { s i n } (x)) \left(4 \sqrt{2} \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}}\right)-\ln \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1\right.\right.\right. \\
& \left.\left.\quad-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}{} \quad \begin{array}{l}
\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1 \\
\\
-\frac{\left.\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}+1\right)-4 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}-1\right)-\ln (\sqrt{-1+\cos (x)}}{\sin (x)} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1
\end{array}\right)\right)
\end{aligned}
$$

Problem 7: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{(a+a \csc (x))^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 60 leaves, 6 steps):

$$
-\frac{2 \arctan \left(\frac{\cot (x) \sqrt{a}}{\sqrt{a+a \csc (x)}}\right)}{a^{3 / 2}}+\frac{\cot (x)}{2(a+a \csc (x))^{3 / 2}}+\frac{5 \arctan \left(\frac{\cot (x) \sqrt{a} \sqrt{2}}{2 \sqrt{a+a \csc (x)}}\right) \sqrt{2}}{4 a^{3 / 2}}
$$

Result(type 3, 1140 leaves):

$$
\begin{aligned}
& -\frac{1}{8\left(\frac{a(1+\sin (x))}{\sin (x)}\right)^{3 / 2} \sin (x)^{3}\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{3 / 2}}\left(\sqrt { 2 } (- 1 + \operatorname { c o s } (x)) \left(10 \sqrt{2} \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}}\right) \cos (x) \sin (x)+\sqrt{2} \cos (x)^{2}(\right.\right. \\
& \left.-\frac{-1+\cos (x)}{\sin (x)}\right)^{3 / 2}-\sqrt{2} \sin (x)\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{3 / 2}-\sqrt{2} \cos (x)^{2} \sqrt{-\frac{-1+\cos (x)}{\sin (x)}}-2 \ln (\\
& \left.-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}\right) \cos (x) \sin (x)-8 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}+1\right) \cos (x) \sin (x)
\end{aligned}
$$

$-8 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}-1\right) \cos (x) \sin (x)-2 \ln \left(-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}\right) \cos (x) \sin (x)$
$+10 \sqrt{2} \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}}\right) \cos (x)^{2}+10 \sqrt{2} \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}}\right) \cos (x)-20 \sqrt{2} \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}}\right) \sin (x)-\sqrt{2}($ $\left.-\frac{-1+\cos (x)}{\sin (x)}\right)^{3 / 2}-2 \ln \left(-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}\right) \cos (x)^{2}-8 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}+1\right) \cos (x)^{2}$ $-8 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}-1\right) \cos (x)^{2}-2 \ln \left(-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}\right) \cos (x)^{2}-2 \ln ($ $\left.-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}\right) \cos (x)+4 \ln \left(-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}\right) \sin (x)$
$-8 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}+1\right) \cos (x)+16 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}+1\right) \sin (x)-8 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}-1\right) \cos (x)$
$+16 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}-1\right) \sin (x)-2 \ln \left(-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}\right) \cos (x)+4 \ln ($
$\left.-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}\right) \sin (x)+16 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}-1\right)+4 \ln ($
$\left.-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}\right)+\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}+4 \ln ($

$$
\begin{aligned}
& \left.-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}\right)+16 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}+1\right)-20 \sqrt{2} \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}}\right) \\
& \left.\left.-\sqrt{2} \cos (x) \sin (x)\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{3 / 2}+\sqrt{2} \cos (x) \sin (x) \sqrt{-\frac{-1+\cos (x)}{\sin (x)}}\right)\right)
\end{aligned}
$$

Problem 8: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{(a+a \csc (x))^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 75 leaves, 7 steps):

$$
-\frac{2 \arctan \left(\frac{\cot (x) \sqrt{a}}{\sqrt{a+a \csc (x)}}\right)}{a^{5 / 2}}+\frac{\cot (x)}{4(a+a \csc (x))^{5 / 2}}+\frac{11 \cot (x)}{16 a(a+a \csc (x))^{3 / 2}}+\frac{43 \arctan \left(\frac{\cot (x) \sqrt{a} \sqrt{2}}{2 \sqrt{a+a \csc (x)}}\right) \sqrt{2}}{32 a^{5 / 2}}
$$

Result(type 3, 1960 leaves):

$$
\begin{aligned}
& -\frac{1}{128\left(\frac{a(1+\sin (x))}{\sin (x)}\right)^{5 / 2} \sin (x)^{5}\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{5 / 2}}\left(\sqrt { 2 } (- 1 + \operatorname { c o s } (x)) ^ { 2 } \left(-344 \sqrt{2} \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}}\right) \cos (x) \sin (x)+19 \sqrt{2} \cos (x)^{2}(\right.\right. \\
& \left.-\frac{-1+\cos (x)}{\sin (x)}\right)^{3 / 2}-19 \sqrt{2} \sin (x)\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{3 / 2}+11 \sqrt{2} \cos (x)^{2} \sqrt{-\frac{-1+\cos (x)}{\sin (x)}}+64 \ln \\
& \left.-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}\right) \cos (x) \sin (x)+256 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}+1\right) \cos (x) \sin (x) \\
& +256 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}-1\right) \cos (x) \sin (x)+64 \ln \left(-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}{\sqrt{\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}\right) \cos (x) \sin (x)
\end{aligned}
$$

$-516 \sqrt{2} \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}}\right) \cos (x)^{2}-344 \sqrt{2} \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}}\right) \cos (x)+688 \sqrt{2} \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}}\right) \sin (x)-32 \ln ($

$$
\left.-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}\right) \cos (x)^{3}-128 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}+1\right) \cos (x)^{3}-128 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}\right.
$$

$$
-1) \cos (x)^{3}-32 \ln \left(-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}\right) \cos (x)^{3}+11 \sqrt{2}\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{7 / 2}+19 \sqrt{2}\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{5 / 2}
$$

$$
-19 \sqrt{2}\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{3 / 2}+96 \ln \left(-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}\right) \cos (x)^{2}+384 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}\right.
$$

$$
+1) \cos (x)^{2}+384 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}-1\right) \cos (x)^{2}+96 \ln \left(-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}\right) \cos (x)^{2}+64 \ln (
$$

$$
\left.-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}\right) \cos (x)-128 \ln \left(-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}\right) \sin (x)
$$

$$
+256 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}+1\right) \cos (x)-512 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}+1\right) \sin (x)+256 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}-1\right) \cos (x)
$$

$$
-512 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}-1\right) \sin (x)+64 \ln \left(-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}\right) \cos (x)-128 \ln (
$$

$$
\left.-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}\right) \sin (x)-512 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}-1\right)-128 \ln (
$$

$$
\begin{aligned}
& \left.-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}\right)+38 \sqrt{2} \cos (x) \sin (x)\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{5 / 2}+11 \sqrt{2} \cos (x)^{2} \sin (x)\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{7 / 2} \\
& +19 \sqrt{2} \cos (x)^{2} \sin (x)\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{5 / 2}-19 \sqrt{2} \cos (x)^{2} \sin (x)\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{3 / 2}-11 \sqrt{2} \cos (x)^{2} \sin (x) \sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \\
& -172 \sqrt{2} \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}}\right) \cos (x)^{2} \sin (x)+22 \sqrt{2} \cos (x) \sin (x)\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{7 / 2}-11 \sqrt{2} \cos (x)^{3}\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{7 / 2} \\
& -11 \sqrt{2} \cos (x)^{2}\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{7 / 2}-19 \sqrt{2} \cos (x)^{3}\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{5 / 2}+11 \sqrt{2} \cos (x)\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{7 / 2}+11 \sqrt{2} \sin (x)(\\
& \left.-\frac{-1+\cos (x)}{\sin (x)}\right)^{7 / 2}-19 \sqrt{2} \cos (x)^{2}\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{5 / 2}+19 \sqrt{2} \cos (x)\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{5 / 2}+19 \sqrt{2} \sin (x)\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{5 / 2} \\
& +19 \sqrt{2} \cos (x)^{3}\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{3 / 2}+11 \sqrt{2} \cos (x)^{3} \sqrt{-\frac{-1+\cos (x)}{\sin (x)}}-19 \sqrt{2} \cos (x)\left(-\frac{-1+\cos (x)}{\sin (x)}\right)^{3 / 2}-11 \sqrt{2} \cos (x) \sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \\
& +32 \ln \left(-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}\right) \cos (x)^{2} \sin (x)+128 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}+1\right) \cos (x)^{2} \sin (x) \\
& +128 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}-1\right) \cos (x)^{2} \sin (x)-11 \sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-11 \sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}-128 \ln \\
& \left.-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}\right)-512 \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2}+1\right)+688 \sqrt{2} \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}}\right)+32 \ln (
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\frac{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)+\cos (x)-\sin (x)-1}{\sqrt{-\frac{-1+\cos (x)}{\sin (x)}} \sqrt{2} \sin (x)-\cos (x)+\sin (x)+1}\right) \cos (x)^{2} \sin (x)+172 \sqrt{2} \arctan \left(\sqrt{-\frac{-1+\cos (x)}{\sin (x)}}\right) \cos (x)^{3}-38 \sqrt{2} \cos (x) \sin (x)(\\
& \left.\left.\left.-\frac{-1+\cos (x)}{\sin (x)}\right)^{3 / 2}-22 \sqrt{2} \cos (x) \sin (x) \sqrt{-\frac{-1+\cos (x)}{\sin (x)}}\right)\right)
\end{aligned}
$$

Problem 9: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{\csc (f x+e)} \sqrt{a+a \csc (f x+e)} \mathrm{d} x
$$

Optimal(type 3, 31 leaves, 2 steps):

$$
-\frac{2 \operatorname{arcsinh}\left(\frac{\cot (f x+e) \sqrt{a}}{\sqrt{a+a \csc (f x+e)}}\right) \sqrt{a}}{f}
$$

Result(type 3, 113 leaves):

$$
-\frac{\sqrt{2} \sqrt{\frac{1}{\sin (f x+e)}}(-1+\cos (f x+e)) \sqrt{\frac{a(\sin (f x+e)+1)}{\sin (f x+e)}}\left(\operatorname{arcsinh}\left(\frac{-1+\cos (f x+e)}{\sin (f x+e)}\right)+\operatorname{arctanh}\left(\frac{\sqrt{2}}{\left.2 \sqrt{\frac{1}{\cos (f x+e)+1}}\right)}\right)\right.}{f(-1+\cos (f x+e)-\sin (f x+e)) \sqrt{\frac{1}{\cos (f x+e)+1}}}
$$

Problem 10: Unable to integrate problem.

$$
\int \frac{\sqrt{a+a \csc (d x+c)}}{\csc (d x+c)^{2 / 3}} d x
$$

Optimal(type 4, 213 leaves, 4 steps):
$-\frac{3 a \cos (d x+c) \csc (d x+c)^{1 / 3}}{2 d \sqrt{a+a \csc (d x+c)}}$

$$
\begin{aligned}
& -\left(3 ^ { 3 / 4 } a ^ { 2 } \operatorname { c o t } (d x + c) (1 - \operatorname { c s c } (d x + c) ^ { 1 / 3 }) \text { EllipticF } (\frac { 1 - \operatorname { c s c } (d x + c) ^ { 1 / 3 } - \sqrt { 3 } } { 1 - \operatorname { c s c } (d x + c) ^ { 1 / 3 } + \sqrt { 3 } } , \mathrm { I } \sqrt { 3 } + 2 \mathrm { I }) \left(\frac{\sqrt{6}}{2}\right.\right. \\
& \left.\left.+\frac{\sqrt{2}}{2}\right) \sqrt{\frac{1+\csc (d x+c)^{1 / 3}+\csc (d x+c)^{2 / 3}}{\left(1-\csc (d x+c)^{1 / 3}+\sqrt{3}\right)^{2}}}\right) /\left(2 d(a-a \csc (d x+c)) \sqrt{a+a \csc (d x+c)} \sqrt{\frac{1-\csc (d x+c)^{1 / 3}}{\left(1-\csc (d x+c)^{1 / 3}+\sqrt{3}\right)^{2}}}\right)
\end{aligned}
$$

Result(type 8, 402 leaves):

$$
\begin{aligned}
& \left.\left.-\frac{3 \mathrm{I}\left(\mathrm{e}^{\mathrm{I}(d x+c)}-2 \mathrm{I}\right)\left(\mathrm{e}^{\mathrm{I}(d x+c)}+\mathrm{I}\right) 2^{1 / 3} \sqrt{\frac{a\left(\left(\mathrm{e}^{\mathrm{I}(d x+c)}\right)^{2}+2 \mathrm{Ie}^{\mathrm{I}(d x+c)}-1\right)}{\left(\mathrm{e}^{\mathrm{I}(d x+c)}\right)^{2}-1}}}{4 d\left(\left(\mathrm{e}^{\mathrm{I}(d x+c)}\right)^{2}+2 \mathrm{Ie}\right.} \mathrm{I}^{\mathrm{I}(d x+c)}-1\right)\left(\frac{\mathrm{I} \mathrm{e}^{\mathrm{I}(d x+c)}}{\left(\mathrm{e}^{\mathrm{I}(d x+c)}\right)^{2}-1}\right)^{2 / 3}\right)(() \\
& \left.\int \frac{-1+\frac{\mathrm{Ie}^{\mathrm{I}(d x+c)}}{2}-\frac{\left(\mathrm{e}^{\mathrm{I}(d x+c)}\right)^{2}}{2}}{\left(a^{3}\left(\left(\mathrm{e}^{\mathrm{I}(d x+c)}\right)^{2}+2 \mathrm{I} \mathrm{e}^{\mathrm{I}(d x+c)}-1\right)^{3}\left(\left(\mathrm{e}^{\mathrm{I}(d x+c)}\right)^{2}-1\right)^{5}\left(\mathrm{e}^{\mathrm{I}(d x+c)}\right)^{4}\right)^{1 / 6}} \mathrm{~d} x\right) \\
& \left.2^{1 / 3} \sqrt{\frac{a\left(\left(\mathrm{e}^{\mathrm{I}(d x+c)}\right)^{2}+2 \mathrm{Ie}^{\mathrm{I}(d x+c)}-1\right)}{\left(\mathrm{e}^{\mathrm{I}(d x+c)}\right)^{2}-1}}\left(a^{3}\left(\left(\mathrm{e}^{\mathrm{I}(d x+c)}\right)^{2}+2 \mathrm{Ie}^{\mathrm{I}(d x+c)}-1\right)^{3}\left(\left(\mathrm{e}^{\mathrm{I}(d x+c)}\right)^{2}-1\right)^{5}\left(\mathrm{e}^{\mathrm{I}(d x+c)}\right)^{4}\right)^{1 / 6}\right) /\left(2 \left(\left(\mathrm{e}^{\mathrm{I}(d x+c)}\right)^{2}\right.\right. \\
& \left.\left.+2 \mathrm{Ie}^{\mathrm{I}(d x+c)}-1\right)\left(\frac{\mathrm{I}^{\mathrm{I}(d x+c)}}{\left(\mathrm{e}^{\mathrm{I}(d x+c)}\right)^{2}-1}\right)^{2 / 3}\left(\left(\mathrm{e}^{\mathrm{I}(d x+c)}\right)^{2}-1\right)\right)
\end{aligned}
$$

Problem 11: Unable to integrate problem.

$$
\int \csc (d x+c)^{n} \sqrt{a-a \csc (d x+c)} \mathrm{d} x
$$

Optimal(type 5, 65 leaves, 3 steps):

$$
-\underline{2 a \cos (d x+c) \csc (d x+c)^{1+n} \text { hypergeom }\left(\left[\frac{1}{2}, 1-n\right],\left[\frac{3}{2}\right], 1+\csc (d x+c)\right)}
$$

$$
d(-\csc (d x+c))^{n} \sqrt{a-a \csc (d x+c)}
$$

Result(type 8, 24 leaves): $\int \csc (d x+c)^{n} \sqrt{a-a \csc (d x+c)} \mathrm{d} x$

Problem 12: Unable to integrate problem.

$$
\int(a+a \csc (f x+e))^{m} \sin (f x+e)^{2} \mathrm{~d} x
$$

Optimal(type 6, 72 leaves, 3 steps):

$$
\text { AppellF1 }\left(\frac{1}{2}+m, 3, \frac{1}{2}, \frac{3}{2}+m, 1+\csc (f x+e), \frac{1}{2}+\frac{\csc (f x+e)}{2}\right) \cot (f x+e)(a+a \csc (f x+e))^{m} \sqrt{2}
$$

$$
f(1+2 m) \sqrt{1-\csc (f x+e)}
$$

Result(type 8, 23 leaves):

$$
\int(a+a \csc (f x+e))^{m} \sin (f x+e)^{2} \mathrm{~d} x
$$

Problem 16: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sin (x)^{3}}{a+b \csc (x)} \mathrm{d} x
$$

Optimal(type 3, 96 leaves, 8 steps):

$$
-\frac{b\left(a^{2}+2 b^{2}\right) x}{2 a^{4}}-\frac{\left(2 a^{2}+3 b^{2}\right) \cos (x)}{3 a^{3}}+\frac{b \cos (x) \sin (x)}{2 a^{2}}-\frac{\cos (x) \sin (x)^{2}}{3 a}-\frac{2 b^{4} \operatorname{arctanh}\left(\frac{a+b \tan \left(\frac{x}{2}\right)}{\sqrt{a^{2}-b^{2}}}\right)}{a^{4} \sqrt{a^{2}-b^{2}}}
$$

Result(type 3, 212 leaves):

$$
\begin{aligned}
& \left.-\frac{b \tan \left(\frac{x}{2}\right)^{5}}{a^{2}\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{3}}-\frac{2 b^{2} \tan \left(\frac{x}{2}\right)^{4}}{a^{3}\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{3}}-\frac{4 \tan \left(\frac{x}{2}\right)^{2}}{a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{3}}-\frac{4 \tan \left(\frac{x}{2}\right)^{2} b^{2}}{a^{3}\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{3}+\frac{4}{a^{2}\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{3}}-\frac{b \tan \left(\frac{x}{2}\right)}{3 a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{3}}} \begin{array}{l}
-\frac{2 b^{2}}{a^{3}\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{3}}-\frac{b \arctan \left(\tan \left(\frac{x}{2}\right)\right)}{a^{2}}-\frac{2 \arctan \left(\tan \left(\frac{x}{2}\right)\right) b^{3}}{a^{4}}+\frac{2 b^{4} \arctan \left(\frac{2 b \tan \left(\frac{x}{2}\right)+2 a}{2 \sqrt{-a^{2}+b^{2}}}\right)}{a^{4} \sqrt{-a^{2}+b^{2}}}
\end{array}\right) .
\end{aligned}
$$

Problem 17: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{(a+b \csc (d x+c))^{2}} \mathrm{~d} x
$$

Optimal(type 3, 103 leaves, 6 steps):

$$
\frac{x}{a^{2}}+\frac{2 b\left(2 a^{2}-b^{2}\right) \operatorname{arctanh}\left(\frac{a+b \tan \left(\frac{d x}{2}+\frac{c}{2}\right)}{\sqrt{a^{2}-b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right)^{3 / 2} d}-\frac{b^{2} \cot (d x+c)}{a\left(a^{2}-b^{2}\right) d(a+b \csc (d x+c))}
$$

Result(type 3, 246 leaves):

$$
\frac{2 \arctan \left(\tan \left(\frac{d x}{2}+\frac{c}{2}\right)\right)}{d a^{2}}-\frac{2 b \tan \left(\frac{d x}{2}+\frac{c}{2}\right)}{d\left(\tan \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+2 \tan \left(\frac{d x}{2}+\frac{c}{2}\right) a+b\right)\left(a^{2}-b^{2}\right)}
$$

$$
-\frac{2 b^{2}}{d a\left(\tan \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b+2 \tan \left(\frac{d x}{2}+\frac{c}{2}\right) a+b\right)\left(a^{2}-b^{2}\right)}-\frac{4 b \arctan \left(\frac{2 b \tan \left(\frac{d x}{2}+\frac{c}{2}\right)+2 a}{2 \sqrt{-a^{2}+b^{2}}}\right)}{d\left(a^{2}-b^{2}\right) \sqrt{-a^{2}+b^{2}}}+\frac{2 b^{3} \arctan \left(\frac{2 b \tan \left(\frac{d x}{2}+\frac{c}{2}\right)+2 a}{2 \sqrt{-a^{2}+b^{2}}}\right.}{d a^{2}\left(a^{2}-b^{2}\right) \sqrt{-a^{2}+b^{2}}}
$$

Problem 18: Unable to integrate problem.

$$
\int \csc (f x+e)(a+b \csc (f x+e))^{m} d x
$$

Optimal(type 6, 90 leaves, 3 steps):

$$
-\frac{\text { AppellF } 1\left(\frac{1}{2},-m, \frac{1}{2}, \frac{3}{2}, \frac{b(1-\csc (f x+e))}{a+b}, \frac{1}{2}-\frac{\csc (f x+e)}{2}\right) \cot (f x+e)(a+b \csc (f x+e))^{m} \sqrt{2}}{f\left(\frac{a+b \csc (f x+e)}{a+b}\right)^{m} \sqrt{1+\csc (f x+e)}}
$$

Result(type 8, 21 leaves):

$$
\int \csc (f x+e)(a+b \csc (f x+e))^{m} \mathrm{~d} x
$$

Test results for the 6 problems in "4.6.1.3 (d cos)^n (a+b csc)^m.txt"
Problem 1: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cos (x)^{4}}{a+a \csc (x)} \mathrm{d} x
$$

Optimal (type 3, 36 leaves, 7 steps):

$$
-\frac{x}{8 a}-\frac{\cos (x)^{3}}{3 a}-\frac{\cos (x) \sin (x)}{8 a}+\frac{\cos (x)^{3} \sin (x)}{4 a}
$$

Result(type 3, 171 leaves):

$$
\begin{aligned}
& -\frac{\tan \left(\frac{x}{2}\right)^{7}}{4 a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{4}}-\frac{2 \tan \left(\frac{x}{2}\right)^{6}}{a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{4}}+\frac{7 \tan \left(\frac{x}{2}\right)^{5}}{4 a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{4}}-\frac{2 \tan \left(\frac{x}{2}\right)^{4}}{a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{4}}-\frac{7 \tan \left(\frac{x}{2}\right)^{3}}{4 a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{4}}-\frac{2 \tan \left(\frac{x}{2}\right)^{2}}{3 a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{4}} \\
& +\frac{\tan \left(\frac{x}{2}\right)}{4 a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{4}}-\frac{2}{3 a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{4}}-\frac{\arctan \left(\tan \left(\frac{x}{2}\right)\right)}{4 a}
\end{aligned}
$$

Problem 2: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cos (x)^{2}}{a+a \csc (x)} \mathrm{d} x
$$

Optimal(type 3, 23 leaves, 5 steps):

$$
-\frac{x}{2 a}-\frac{\cos (x)}{a}+\frac{\cos (x) \sin (x)}{2 a}
$$

Result(type 3, 86 leaves):

$$
-\frac{\tan \left(\frac{x}{2}\right)^{3}}{a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{2}}-\frac{2 \tan \left(\frac{x}{2}\right)^{2}}{a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{2}}+\frac{\tan \left(\frac{x}{2}\right)}{a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{2}}-\frac{2}{a\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)^{2}}-\frac{\arctan \left(\tan \left(\frac{x}{2}\right)\right)}{a}
$$

Problem 6: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sec (x)^{4}}{a+b \csc (x)} \mathrm{d} x
$$

Optimal(type 3, 99 leaves, 7 steps):

$$
\frac{2 a^{3} b \operatorname{arctanh}\left(\frac{a+b \tan \left(\frac{x}{2}\right)}{\sqrt{a^{2}-b^{2}}}\right)}{\left(a^{2}-b^{2}\right)^{5 / 2}}-\frac{\sec (x)^{3}(b-a \sin (x))}{3\left(a^{2}-b^{2}\right)}-\frac{\sec (x)\left(3 a^{2} b-a\left(2 a^{2}+b^{2}\right) \sin (x)\right)}{3\left(a^{2}-b^{2}\right)^{2}}
$$

Result(type 3, 199 leaves):

$$
\begin{aligned}
& -\frac{4}{3\left(\tan \left(\frac{x}{2}\right)-1\right)^{3}(4 a+4 b)}-\frac{2}{\left(\tan \left(\frac{x}{2}\right)-1\right)^{2}(4 a+4 b)}-\frac{a}{(a+b)^{2}\left(\tan \left(\frac{x}{2}\right)-1\right)}-\frac{b}{2(a+b)^{2}\left(\tan \left(\frac{x}{2}\right)-1\right)} \\
& -\frac{4}{3\left(\tan \left(\frac{x}{2}\right)+1\right)^{3}(4 a-4 b)}+\frac{2}{\left(\tan \left(\frac{x}{2}\right)+1\right)^{2}(4 a-4 b)}-\frac{a}{(a-b)^{2}\left(\tan \left(\frac{x}{2}\right)+1\right)}+\frac{b}{2(a-b)^{2}\left(\tan \left(\frac{x}{2}\right)+1\right)} \\
& \quad-\frac{2 a^{3} b \arctan \left(\frac{2 b \tan \left(\frac{x}{2}\right)+2 a}{\left.2 \sqrt{-a^{2}+b^{2}}\right)}\right.}{} \\
& \quad-\frac{(a+b)^{2}(a-b)^{2} \sqrt{-a^{2}+b^{2}}}{}
\end{aligned}
$$

Test results for the 10 problems in "4.6.1.4 (d cot)^n (a+b csc)^m.txt"
Problem 1: Result more than twice size of optimal antiderivative.

$$
\int \frac{\tan (x)^{4}}{a+a \csc (x)} \mathrm{d} x
$$

Optimal(type 3, 49 leaves, 5 steps):

$$
\frac{x}{a}-\frac{(15-8 \csc (x)) \tan (x)}{15 a}+\frac{(5-4 \csc (x)) \tan (x)^{3}}{15 a}-\frac{(1-\csc (x)) \tan (x)^{5}}{5 a}
$$

Result(type 3, 101 leaves):

$$
\begin{aligned}
& -\frac{1}{6 a\left(\tan \left(\frac{x}{2}\right)-1\right)^{3}}-\frac{1}{4 a\left(\tan \left(\frac{x}{2}\right)-1\right)^{2}}+\frac{5}{8 a\left(\tan \left(\frac{x}{2}\right)-1\right)}+\frac{2 \arctan \left(\tan \left(\frac{x}{2}\right)\right)}{a}+\frac{1}{5 a\left(\tan \left(\frac{x}{2}\right)+1\right)^{5}}-\frac{2}{a\left(\tan \left(\frac{x}{2}\right)+1\right)^{4}} \\
& \quad+\frac{1}{a\left(\tan \left(\frac{x}{2}\right)+1\right)^{2}}+\frac{1}{8 a\left(\tan \left(\frac{x}{2}\right)+1\right)}
\end{aligned}
$$

Problem 4: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cot (x)^{6}}{a+a \csc (x)} \mathrm{d} x
$$

Optimal(type 3, 43 leaves, 5 steps):

$$
-\frac{x}{a}-\frac{3 \operatorname{arctanh}(\cos (x))}{8 a}+\frac{\cot (x)^{3}(4-3 \csc (x))}{12 a}-\frac{\cot (x)(8-3 \csc (x))}{8 a}
$$

Result(type 3, 107 leaves):

$$
\begin{aligned}
& \frac{\tan \left(\frac{x}{2}\right)^{4}}{64 a}-\frac{\tan \left(\frac{x}{2}\right)^{3}}{24 a}-\frac{\tan \left(\frac{x}{2}\right)^{2}}{8 a}+\frac{5 \tan \left(\frac{x}{2}\right)}{8 a}-\frac{2 \arctan \left(\tan \left(\frac{x}{2}\right)\right)}{a}-\frac{1}{64 a \tan \left(\frac{x}{2}\right)^{4}}+\frac{1}{24 a \tan \left(\frac{x}{2}\right)^{3}}+\frac{1}{8 a \tan \left(\frac{x}{2}\right)^{2}}-\frac{5}{8 a \tan \left(\frac{x}{2}\right)} \\
& \quad+\frac{3 \ln \left(\tan \left(\frac{x}{2}\right)\right)}{8 a}
\end{aligned}
$$

Problem 10: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cot (x)^{6}}{a+b \csc (x)} d x
$$

Optimal(type 3, 168 leaves, 16 steps):
$\begin{aligned} &-\frac{x}{a}-\frac{3 \operatorname{arctanh}(\cos (x))}{8 b}-\frac{\left(a^{2}-3 b^{2}\right) \operatorname{arctanh}(\cos (x))}{2 b^{3}}-\frac{\left(a^{4}-3 a^{2} b^{2}+3 b^{4}\right) \operatorname{arctanh}(\cos (x))}{b^{5}}+\frac{2\left(a^{2}-b^{2}\right)^{5 / 2} \operatorname{arctanh}\left(\frac{a+b \tan \left(\frac{x}{2}\right)}{\sqrt{a^{2}-b^{2}}}\right)}{a b^{5}} \\ &+\frac{a \cot (x)}{b^{2}}+\frac{a\left(a^{2}-3 b^{2}\right) \cot (x)}{b^{4}}+\frac{a \cot (x)^{3}}{3 b^{2}}-\frac{3 \cot (x) \csc (x)}{8 b}-\frac{\left(a^{2}-3 b^{2}\right) \cot (x) \csc (x)}{2 b^{3}}-\frac{\cot (x) \csc (x)^{3}}{4 b}\end{aligned}$

Result (type 3, 362 leaves):

$$
\begin{aligned}
& \frac{\tan \left(\frac{x}{2}\right)^{4}}{64 b}-\frac{\tan \left(\frac{x}{2}\right)^{3} a}{24 b^{2}}+\frac{\tan \left(\frac{x}{2}\right)^{2} a^{2}}{8 b^{3}}-\frac{\tan \left(\frac{x}{2}\right)^{2}}{4 b}-\frac{\tan \left(\frac{x}{2}\right) a^{3}}{2 b^{4}}+\frac{9 a \tan \left(\frac{x}{2}\right)}{8 b^{2}}-\frac{2 \arctan \left(\tan \left(\frac{x}{2}\right)\right)}{a}-\frac{1}{64 \tan \left(\frac{x}{2}\right)^{4} b}-\frac{1}{8 b^{3} \tan \left(\frac{x}{2}\right)^{2}} \\
& +\frac{1}{4 b \tan \left(\frac{x}{2}\right)^{2}}+\frac{\ln \left(\tan \left(\frac{x}{2}\right)\right) a^{4}}{b^{5}}-\frac{5 \ln \left(\tan \left(\frac{x}{2}\right)\right) a^{2}}{2 b^{3}}+\frac{15 \ln \left(\tan \left(\frac{x}{2}\right)\right)}{8 b}+\frac{a^{2}}{24 \tan \left(\frac{x}{2}\right)^{3} b^{2}}+\frac{a}{2 b^{4} \tan \left(\frac{x}{2}\right)}-\frac{a^{3}}{8 b^{2} \tan \left(\frac{x}{2}\right)} \\
& -\frac{2 a^{5} \arctan \left(\frac{2 b \tan \left(\frac{x}{2}\right)+2 a}{2 \sqrt{-a^{2}+b^{2}}}\right)}{b^{5} \sqrt{-a^{2}+b^{2}}}+\frac{6 a^{3} \arctan \left(\frac{2 b \tan \left(\frac{x}{2}\right)+2 a}{\left.2 \sqrt{-a^{2}+b^{2}}\right)}\right.}{b^{3} \sqrt{-a^{2}+b^{2}}}-\frac{6 a \arctan \left(\frac{2 b \tan \left(\frac{x}{2}\right)+2 a}{\left.2 \sqrt{-a^{2}+b^{2}}\right)}\right.}{2 b \arctan \left(\frac{2 b \tan \left(\frac{x}{2}\right)+2 a}{\left.2 \sqrt{-a^{2}+b^{2}}\right)}\right.}+1
\end{aligned}
$$

Test results for the 25 problems in $44.6 .11(e x)^{\wedge} m\left(a+b \csc \left(c+d x^{\wedge} n\right)\right)^{\wedge} p . t x t^{\prime \prime}$
Problem 1: Unable to integrate problem.

$$
\int x^{5}\left(a+b \csc \left(d x^{2}+c\right)\right) \mathrm{d} x
$$

Optimal(type 4, 115 leaves, 10 steps):

$$
\frac{a x^{6}}{6}-\frac{b x^{4} \operatorname{arctanh}\left(\mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}\right)}{d}+\frac{\mathrm{I} b x^{2} \operatorname{polylog}\left(2,-\mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}\right)}{d^{2}}-\frac{\mathrm{I} b x^{2} \operatorname{polylog}\left(2, \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}\right)}{d^{2}}-\frac{b \operatorname{poly} \log \left(3,-\mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}\right)}{d^{3}}+\frac{b \operatorname{polylog}\left(3, \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}\right)}{d^{3}}
$$

Result(type 8, 44 leaves):

$$
\frac{a x^{6}}{6}+\int \frac{2 \mathrm{I} b x^{5} \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{\left(\mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}\right)^{2}-1} \mathrm{~d} x
$$

Problem 2: Unable to integrate problem.

$$
\int x^{3}\left(a+b \csc \left(d x^{2}+c\right)\right) \mathrm{d} x
$$

Optimal(type 4, 70 leaves, 8 steps):

$$
\frac{a x^{4}}{4}-\frac{b x^{2} \operatorname{arctanh}\left(\mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}\right)}{d}+\frac{\mathrm{I} b \operatorname{polylog}\left(2,-\mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}\right)}{2 d^{2}}-\frac{\mathrm{I} b \operatorname{polylog}\left(2, \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}\right)}{2 d^{2}}
$$

Result(type 8, 44 leaves):

$$
\frac{a x^{4}}{4}+\int \frac{2 \mathrm{I} b x^{3} \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{\left(\mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}\right)^{2}-1} \mathrm{~d} x
$$

Problem 4: Unable to integrate problem.

$$
\int x^{3}\left(a+b \csc \left(d x^{2}+c\right)\right)^{2} \mathrm{~d} x
$$

Optimal(type 4, 111 leaves, 10 steps):

$$
\frac{a^{2} x^{4}}{4}-\frac{2 a b x^{2} \operatorname{arctanh}\left(\mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}\right)}{d}-\frac{b^{2} x^{2} \cot \left(d x^{2}+c\right)}{2 d}+\frac{b^{2} \ln \left(\sin \left(d x^{2}+c\right)\right)}{2 d^{2}}+\frac{\mathrm{I} a b \operatorname{polylog}\left(2,-\mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}\right)}{d^{2}}-\frac{\mathrm{I} a b \operatorname{polylog}\left(2, \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}\right)}{d^{2}}
$$

Result(type 8, 85 leaves):

$$
\frac{a^{2} x^{4}}{4}-\frac{\mathrm{I} x^{2} b^{2}}{d\left(\left(\mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}\right)^{2}-1\right)}+\int \frac{2 \mathrm{I} b x\left(2 a d x^{2} \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}+b\right)}{d\left(\left(\mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}\right)^{2}-1\right)} \mathrm{d} x
$$

Problem 6: Unable to integrate problem.

$$
\int \frac{x^{5}}{a+b \csc \left(d x^{2}+c\right)} \mathrm{d} x
$$

Optimal(type 4, 344 leaves, 13 steps):

$$
\begin{aligned}
& \frac{x^{6}}{6 a}+\frac{\mathrm{I} b x^{4} \ln \left(1-\frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{2 a d \sqrt{-a^{2}+b^{2}}}-\frac{\mathrm{I} b x^{4} \ln \left(1-\frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{2 a d \sqrt{-a^{2}+b^{2}}}+\frac{b x^{2} \operatorname{polylog}\left(2, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a d^{2} \sqrt{-a^{2}+b^{2}}}-\frac{b x^{2} \operatorname{polylog}\left(2, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a d^{2} \sqrt{-a^{2}+b^{2}}} \\
&+\frac{\mathrm{I} b \operatorname{poly} \log \left(3, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a d^{3} \sqrt{-a^{2}+b^{2}}}-\frac{\mathrm{I} b \operatorname{poly} \log \left(3, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a d^{3} \sqrt{-a^{2}+b^{2}}}
\end{aligned}
$$

Result(type 8, 68 leaves):

$$
\frac{x^{6}}{6 a}+\int \frac{-2 \mathrm{I} b x^{5} \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{a\left(2 \mathrm{I} b \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}+\left(\mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}\right)^{2} a-a\right)} \mathrm{d} x
$$

Problem 8: Unable to integrate problem.

$$
\int \frac{x^{3}}{a+b \csc \left(d x^{2}+c\right)} d x
$$

Optimal(type 4, 231 leaves, 11 steps):

$$
\frac{x^{4}}{4 a}+\frac{\mathrm{I} b x^{2} \ln \left(1-\frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{2 a d \sqrt{-a^{2}+b^{2}}}-\frac{\mathrm{I} b x^{2} \ln \left(1-\frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{2 a d \sqrt{-a^{2}+b^{2}}}+\frac{b \operatorname{polylog}\left(2, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{2 a d^{2} \sqrt{-a^{2}+b^{2}}}-\frac{b \operatorname{polylog}\left(2, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{2 a d^{2} \sqrt{-a^{2}+b^{2}}}
$$

Result(type 8, 68 leaves):

$$
\frac{x^{4}}{4 a}+\int \frac{-2 \mathrm{I} b x^{3} \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{a\left(2 \mathrm{I} b \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}+\left(\mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}\right)^{2} a-a\right)} \mathrm{d} x
$$

Problem 10: Unable to integrate problem.

$$
\int \frac{x^{5}}{\left(a+b \csc \left(d x^{2}+c\right)\right)^{2}} d x
$$

Optimal(type 4, 999 leaves, 31 steps):

$$
\begin{aligned}
& -\frac{\mathrm{I} b^{3} \text { polylog }\left(3, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{3}}+\frac{x^{6}}{6 a^{2}}+\frac{b^{2} x^{2} \ln \left(1+\frac{a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{\mathrm{I} b-\sqrt{a^{2}-b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{2}}+\frac{b^{2} x^{2} \ln \left(1+\frac{a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{\mathrm{I} b+\sqrt{a^{2}-b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{2}}+\frac{\mathrm{I} b x^{4} \ln \left(1-\frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d \sqrt{-a^{2}+b^{2}}} \\
& -\frac{\mathrm{I} b x^{4} \ln \left(1-\frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d \sqrt{-a^{2}+b^{2}}}-\frac{\mathrm{I} b^{2} p \operatorname{poly} \log \left(2,-\frac{a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{\mathrm{I} b+\sqrt{a^{2}-b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{3}}+\frac{\mathrm{I} b^{3} x^{4} \ln \left(1-\frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{2 a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d}-\frac{b^{3} x^{2} p o l y \log \left(2, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{2}} \\
& +\frac{b^{3} x^{2} \text { polylog }\left(2, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{2}}-\frac{2 \mathrm{I} b \text { polylog }\left(3, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{3} \sqrt{-a^{2}+b^{2}}}+\frac{\mathrm{I} b^{3} \text { polylog }\left(3, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{3}} \\
& -\frac{b^{2} x^{4} \cos \left(d x^{2}+c\right)}{2 a\left(a^{2}-b^{2}\right) d\left(b+a \sin \left(d x^{2}+c\right)\right)}-\frac{\mathrm{I} b^{2} x^{4}}{2 a^{2}\left(a^{2}-b^{2}\right) d}-\frac{\mathrm{I} b^{3} x^{4} \ln \left(1-\frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{2 a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d}+\frac{2 b x^{2} \operatorname{polylog}\left(2, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{2} \sqrt{-a^{2}+b^{2}}} \\
& -\frac{2 b x^{2} \operatorname{polylog}\left(2, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{2} \sqrt{-a^{2}+b^{2}}}-\frac{\mathrm{I} b^{2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{\mathrm{I} b-\sqrt{a^{2}-b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{3}}+\frac{2 \mathrm{I} b \text { polylog }\left(3, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{3} \sqrt{-a^{2}+b^{2}}}
\end{aligned}
$$

Result(type 8, 215 leaves):

$$
\frac{x^{6}}{6 a^{2}}-\frac{\mathrm{I} b^{2} x^{4}\left(\mathrm{I} a+b \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}\right)}{a^{2}\left(-a^{2}+b^{2}\right) d\left(2 b \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}-\mathrm{I}\left(\mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}\right)^{2} a+\mathrm{I} a\right)}+\int \frac{-2 \mathrm{I} b x^{3}\left(2 x^{2} a^{2} d \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}-x^{2} b^{2} d \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}+2 \mathrm{I} b^{2} \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}-2 b a\right)}{a^{2}\left(a^{2}-b^{2}\right) d\left(2 \mathrm{I} b \mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}+\left(\mathrm{e}^{\mathrm{I}\left(d x^{2}+c\right)}\right)^{2} a-a\right)} d x
$$

Problem 14: Unable to integrate problem.

$$
\int \frac{x^{3}}{a+b \csc (c+d \sqrt{x})} \mathrm{d} x
$$

Optimal(type 4, 905 leaves, 23 steps):

$$
\begin{aligned}
& \frac{x^{4}}{4 a}-\frac{10080 \mathrm{I} b \text { polylog }\left(7, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b+\sqrt{-a^{2}+b^{2}}}\right) \sqrt{x}}{a d^{7} \sqrt{-a^{2}+b^{2}}}+\frac{1680 \mathrm{I} b x^{3 / 2} \operatorname{polylog}\left(5, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a d^{5} \sqrt{-a^{2}+b^{2}}}+\frac{14 b x^{3} \operatorname{polylog}\left(2, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a d^{2} \sqrt{-a^{2}+b^{2}}} \\
& -\frac{14 b x^{3} \text { polylog }\left(2, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{10080 \mathrm{I} b \text { polylog }\left(7, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b-\sqrt{-a^{2}+b^{2}}}\right) \sqrt{x}}+\frac{2 \mathrm{I} b x^{7 / 2} \ln \left(1-\frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{\frac{1}{a^{2}+b^{2}}}+\frac{10 \sqrt{-a^{2}+b^{2}}}{} \\
& -\frac{420 b x^{2} \operatorname{polylog}\left(4, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a d^{4} \sqrt{-a^{2}+b^{2}}}+\frac{420 b x^{2} \operatorname{polylog}\left(4, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a d^{4} \sqrt{-a^{2}+b^{2}}}-\frac{1680 \mathrm{I} b x^{3} / 2 \operatorname{poly} \log \left(5, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a d^{5} \sqrt{-a^{2}+b^{2}}} \\
& -\frac{84 \mathrm{I} b x^{5} / 2}{} \text { polylog }\left(3, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b+\sqrt{-a^{2}+b^{2}}}\right) ~+\frac{5040 b x \operatorname{poly} \log \left(6, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a d^{3} \sqrt{-a^{2}+b^{2}}}-\frac{5040 b x \operatorname{polylog}\left(6, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a d^{6} \sqrt{-a^{2}+b^{2}}} \\
& -\frac{10080 b \text { polylog }\left(8, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a d^{8} \sqrt{-a^{2}+b^{2}}}+\frac{10080 b \text { polylog }\left(8, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a d^{8} \sqrt{-a^{2}+b^{2}}}-\frac{2 \mathrm{I} b x^{7 / 2} \ln \left(1-\frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a d \sqrt{-a^{2}+b^{2}}} \\
& +\frac{84 \mathrm{I} b x^{5 / 2} \text { polylog }\left(3, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a d^{3} \sqrt{-a^{2}+b^{2}}} \\
& \text { Result(type 8, } 20 \text { leaves): } \\
& \int \frac{x^{3}}{a+b \csc (c+d \sqrt{x})} \mathrm{d} x
\end{aligned}
$$

Problem 16: Unable to integrate problem.

$$
\int \frac{x^{2}}{(a+b \csc (c+d \sqrt{x}))^{2}} \mathrm{~d} x
$$

Optimal(type 4, 2040 leaves, 49 steps):
$-\frac{240 b^{2} \text { polylog }\left(5,-\frac{a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{\mathrm{I} b-\sqrt{a^{2}-b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{6}}-\frac{240 b^{2} \operatorname{polylog}\left(5,-\frac{a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{\mathrm{I} b+\sqrt{a^{2}-b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{6}}-\frac{240 b^{3} \operatorname{polylog}\left(6, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{6}}$
$+\frac{240 b^{3} \text { polylog }\left(6, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{6}}+\frac{480 b \text { polylog }\left(6, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{6} \sqrt{-a^{2}+b^{2}}}-\frac{480 b \operatorname{poly} \log \left(6, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{6} \sqrt{-a^{2}+b^{2}}}+\frac{x^{3}}{3 a^{2}}$ $+\frac{10 b^{2} x^{2} \ln \left(1+\frac{a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{\mathrm{I} b-\sqrt{a^{2}-b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{2}}+\frac{10 b^{2} x^{2} \ln \left(1+\frac{a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{\mathrm{I} b+\sqrt{a^{2}-b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{2}}-\frac{10 b^{3} x^{2} p o \log \left(2, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{2}}$ $+\frac{10 b^{3} x^{2} \text { polylog }\left(2, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{2}}+\frac{120 b^{2} x \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{\mathrm{I} b-\sqrt{a^{2}-b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{4}}+\frac{120 b^{2} x \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{\mathrm{I} b+\sqrt{a^{2}-b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{4}}$ $+\frac{120 b^{3} x \text { polylog }\left(4, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{4}}-\frac{120 b^{3} x \operatorname{polylog}\left(4, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{4}}+\frac{20 b x^{2} \text { polylog }\left(2, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{2} \sqrt{-a^{2}+b^{2}}}$ $-\frac{20 b x^{2} \operatorname{polylog}\left(2, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{2} \sqrt{-a^{2}+b^{2}}}-\frac{240 b x \operatorname{poly} \log \left(4, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{4} \sqrt{-a^{2}+b^{2}}}+\frac{240 b x \operatorname{polylog}\left(4, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{4} \sqrt{-a^{2}+b^{2}}}-\frac{2 \mathrm{I} b^{2} x^{5} / 2}{a^{2}\left(a^{2}-b^{2}\right) d}$ $-\frac{240 \mathrm{I} b^{3} \operatorname{polylog}\left(5, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b+\sqrt{-a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{5}}+\frac{480 \mathrm{I} b \operatorname{polylog}\left(5, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b+\sqrt{-a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2} d^{5} \sqrt{-a^{2}+b^{2}}}+\frac{4 \mathrm{I} b x^{5 / 2} \ln \left(1-\frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d \sqrt{-a^{2}+b^{2}}}$ $+\frac{240 \mathrm{I} b^{3} \operatorname{polylog}\left(5, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b-\sqrt{-a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{5}}+\frac{80 \mathrm{I} b x^{3 / 2} \operatorname{poly} \log \left(3, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2} d^{3} \sqrt{-a^{2}+b^{2}}}+\frac{2 \mathrm{I} b^{3} x^{5} / 2 \ln \left(1-\frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}}(c+d \sqrt{x})}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d}$ $+\frac{240 \mathrm{I} b^{2} \text { polylog }\left(4,-\frac{a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{\mathrm{I} b-\sqrt{a^{2}-b^{2}}}\right) \sqrt{x}}{a^{2}\left(a^{2}-b^{2}\right) d^{5}}+\frac{40 \mathrm{I} b^{3} x^{3} / 2 \operatorname{polylog}\left(3, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{3}}+\frac{240 \mathrm{I} b^{2} \operatorname{polylog}\left(4,-\frac{a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{\mathrm{I} b+\sqrt{a^{2}-b^{2}}}\right) \sqrt{x}}{a^{2}\left(a^{2}-b^{2}\right) d^{5}}$ $-\frac{480 \mathrm{I} b \text { polylog }\left(5, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b-\sqrt{-a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2} d^{5} \sqrt{-a^{2}+b^{2}}}-\frac{2 b^{2} x^{5} / 2 \cos (c+d \sqrt{x})}{a\left(a^{2}-b^{2}\right) d(b+a \sin (c+d \sqrt{x}))}-\frac{2 \mathrm{I} b^{3} x^{5} / 2 \ln \left(1-\frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d}$

$$
\left.\begin{array}{rl}
& 40 \mathrm{I} b^{2} x^{3} / 2 \operatorname{poly} \log \left(2,-\frac{a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{\mathrm{I} b-\sqrt{a^{2}-b^{2}}}\right) \\
a^{2}\left(a^{2}-b^{2}\right) d^{3}
\end{array} \frac{40 \mathrm{I} b^{2} x^{3} / 2 \operatorname{poly} \log \left(2,-\frac{a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{\mathrm{I} b+\sqrt{a^{2}-b^{2}}}\right)}{a^{2}\left(a^{2}-b^{2}\right) d^{3}}-\frac{40 \mathrm{I} b^{3} x^{3} / 2 \operatorname{poly} \log \left(3, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{a^{2}\left(-a^{2}+b^{2}\right)^{3 / 2} d^{3}}\right)
$$

Result(type 8, 20 leaves):

$$
\int \frac{x^{2}}{(a+b \csc (c+d \sqrt{x}))^{2}} \mathrm{~d} x
$$

Problem 18: Unable to integrate problem.

$$
\int x^{3 / 2}(a+b \csc (c+d \sqrt{x}))^{2} \mathrm{~d} x
$$

Optimal(type 4, 344 leaves, 21 steps):
$\frac{6 \mathrm{I} b^{2} \operatorname{poly} \log \left(4, \mathrm{e}^{2 \mathrm{I}(c+d \sqrt{x})}\right)}{d^{5}}+\frac{2 a^{2} x^{5} / 2}{5}-\frac{8 a b x^{2} \operatorname{arctanh}\left(\mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}\right)}{d}-\frac{2 b^{2} x^{2} \cot (c+d \sqrt{x})}{d}+\frac{8 b^{2} x^{3} / 2 \ln \left(1-\mathrm{e}^{2 \mathrm{I}(c+d \sqrt{x})}\right)}{d^{2}}-\frac{2 \mathrm{I} b^{2} x^{2}}{d}$

$$
\begin{aligned}
& +\frac{16 \mathrm{I} a b x^{3 / 2} \operatorname{polylog}\left(2,-\mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}\right)}{d^{2}}-\frac{16 \mathrm{I} a b x^{3 / 2} \operatorname{polylog}\left(2, \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}\right)}{d^{2}}-\frac{48 a b x \operatorname{poly} \log \left(3,-\mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}\right)}{d^{3}}+\frac{48 a b x \operatorname{poly} \log \left(3, \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}\right)}{d^{3}} \\
& -\frac{12 \mathrm{I} b^{2} x \operatorname{polylog}\left(2, \mathrm{e}^{2 \mathrm{I}(c+d \sqrt{x})}\right)}{d^{3}}+\frac{96 a b \operatorname{poly} \log \left(5,-\mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}\right)}{d^{5}}-\frac{96 a b \operatorname{polylog}\left(5, \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}\right)}{d^{5}}+\frac{12 b^{2} \operatorname{polylog}\left(3, \mathrm{e}^{2 \mathrm{I}(c+d \sqrt{x})}\right) \sqrt{x}}{d^{4}} \\
& +\frac{96 \mathrm{I} a b \operatorname{polylog}\left(4, \mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}\right) \sqrt{x}}{d^{4}}-\frac{96 \mathrm{I} a b \operatorname{polylog}\left(4,-\mathrm{e}^{\mathrm{I}(c+d \sqrt{x})}\right) \sqrt{x}}{d^{4}}
\end{aligned}
$$

Result(type 8, 20 leaves):

$$
\int x^{3 / 2}(a+b \csc (c+d \sqrt{x}))^{2} \mathrm{~d} x
$$

Problem 24: Result more than twice size of optimal antiderivative.

$$
\int \frac{(e x)^{-1+2 n}}{a+b \csc \left(c+d x^{n}\right)} \mathrm{d} x
$$

Optimal(type 4, 310 leaves, 12 steps):

$$
\begin{aligned}
& \frac{(e x)^{2 n}}{2 a e n}+\frac{\mathrm{I} b(e x)^{2 n} \ln \left(1-\frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(c+d x^{n}\right)}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{\left.\operatorname{adenx^{n}\sqrt {-a^{2}+b^{2}}}-\frac{\mathrm{I} b(e x)^{2 n} \ln \left(1-\frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(c+d x^{n}\right)}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a}\right) \frac{b(e x)^{2 n} \operatorname{polylog}\left(2, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(c+d x^{n}\right)}}{b-\sqrt{-a^{2}+b^{2}}}\right)}{\operatorname{adenx^{n}\sqrt {-a^{2}+b^{2}}}}+\frac{b(e x)^{2 n} \operatorname{polylog}\left(2, \frac{\mathrm{I} a \mathrm{e}^{\mathrm{I}\left(c+d x^{n}\right)}}{b+\sqrt{-a^{2}+b^{2}}}\right)}{a d^{2} e n x^{2 n} \sqrt{-a^{2}+b^{2}}}} \\
& \quad-\frac{e n x^{2 n} \sqrt{-a^{2}+b^{2}}}{a}
\end{aligned}
$$

Result(type 4, 1335 leaves):
$-\frac{(-1+2 n)\left(\mathrm{I} \pi \operatorname{csgn}(\mathrm{I} e x)^{3}-\mathrm{I} \pi \operatorname{csgn}(\mathrm{I} e x)^{2} \operatorname{csgn}(\mathrm{I} e)-\mathrm{I} \pi \operatorname{csgn}(\mathrm{I} e x)^{2} \operatorname{csgn}(\mathrm{I} x)+\mathrm{I} \pi \operatorname{csgn}(\mathrm{I} e x) \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} x)-2 \ln (x)-2 \ln (e)\right)}{2}$
$x \mathrm{e}$

$2 a n$

$-\frac{1}{a e n d \sqrt{-\mathrm{e}^{2 \mathrm{I} c} b^{2}+\mathrm{e}^{2 \mathrm{I} c} a^{2}}}\left(b\left(e^{n}\right)^{2} \sqrt{(-1)^{\operatorname{csgn}(\mathrm{I} e x)^{3}}}(-1) \frac{\operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)}{2}\right) x^{n} \ln \left(\frac{\mathrm{I} \mathrm{e}^{\mathrm{I} c} b+a \mathrm{e}^{\mathrm{I}\left(d x^{n}+2 c\right)}-\sqrt{-\mathrm{e}^{2 \mathrm{I} c} b^{2}+\mathrm{e}^{2 \mathrm{I} c} a^{2}}}{\mathrm{I} \mathrm{e}^{\mathrm{I} c} b-\sqrt{-\mathrm{e}^{2 \mathrm{I} c} b^{2}+\mathrm{e}^{2 \mathrm{I} c} a^{2}}}\right)$
$\left.e^{-\mathrm{I} \pi n \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)} \mathrm{e}^{\mathrm{I} \pi n \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} e x)^{2}} \mathrm{e}^{\mathrm{I} \pi n \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)^{2}} \mathrm{e}^{-\mathrm{I} \pi n \operatorname{csgn}(\mathrm{I} e x)^{3}} \mathrm{e}^{-\frac{\mathrm{I}}{2} \pi \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} e x)^{2}} e^{-\frac{\mathrm{I}}{2} \pi \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)^{2}} \mathrm{e}^{\mathrm{I} c}\right)$

$$
+\frac{1}{a e n d \sqrt{-\mathrm{e}^{2 \mathrm{I} c} b^{2}+\mathrm{e}^{2 \mathrm{I} c} a^{2}}}\left(b\left(e^{n}\right)^{2} \sqrt{(-1)^{\operatorname{csgn}(\mathrm{I} e x)^{3}}}(-1)^{\frac{\operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)}{2}} x^{n} \ln \left(\frac{\mathrm{I} \mathrm{e}^{\mathrm{I} c} b+a \mathrm{e}^{\mathrm{I}\left(d x^{n}+2 c\right)}+\sqrt{-\mathrm{e}^{2 \mathrm{I} c} b^{2}+\mathrm{e}^{2 \mathrm{I} c} a^{2}}}{\mathrm{I} \mathrm{e}^{\mathrm{I} c} b+\sqrt{-\mathrm{e}^{2 \mathrm{I} c} b^{2}+\mathrm{e}^{2 \mathrm{I} c} a^{2}}}\right)\right.
$$

$\left.\mathrm{e}^{-\mathrm{I} \pi n \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)} \mathrm{e}^{\mathrm{I} \pi n \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} e x)^{2}} \mathrm{e}^{\mathrm{I} \pi n \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)^{2}} \mathrm{e}^{-\mathrm{I} \pi n \operatorname{csgn}(\mathrm{I} e x)^{3}} \mathrm{e}^{-\frac{\mathrm{I}}{2} \pi \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} e x)^{2}} e^{-\frac{\mathrm{I}}{2} \pi \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)^{2}} \mathrm{e}^{\mathrm{I} c}\right)$

$$
\left.\begin{array}{l}
+\frac{1}{a e n d^{2} \sqrt{-\mathrm{e}^{2 \mathrm{I} c} b^{2}+\mathrm{e}^{2 \mathrm{I} c} a^{2}}}\left(\mathrm{I} b\left(e^{n}\right)^{2} \sqrt{(-1)^{\operatorname{csgn}(\mathrm{I} e x)^{3}}}(-1) \frac{\operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)}{2}\right. \\
+\frac{a \mathrm{e}^{\mathrm{I}\left(d x^{n}+2 c\right)}}{\mathrm{I} \frac{\mathrm{e}}{} \mathrm{I} c} b-\sqrt{-\mathrm{e}^{2 \mathrm{I} c} b^{2}+\mathrm{e}^{2 \mathrm{I} c} a^{2}} \\
\mathrm{dilog}\left(\frac{\sqrt{-\mathrm{e}^{2 \mathrm{I} c} b^{2}+\mathrm{e}^{2 \mathrm{I} c} a^{2}}}{\mathrm{I}} \frac{\mathrm{I} \mathrm{e}^{\mathrm{I} c} b-\sqrt{-\mathrm{e}^{2 \mathrm{I} c} b^{2}+\mathrm{e}^{2 \mathrm{I} c} a^{2}}}{-\mathrm{e}^{2 \mathrm{I} c} b^{2}+\mathrm{e}^{2 \mathrm{I} c} a^{2}}\right.
\end{array}\right)
$$

$\left.\mathrm{e}^{-\mathrm{I} \pi n \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)} \mathrm{e}^{\mathrm{I} \pi n \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} e x)^{2}} \mathrm{e}^{\mathrm{I} \pi n \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)^{2}} \mathrm{e}^{-\mathrm{I} \pi n \operatorname{csgn}(\mathrm{I} e x)^{3}} \mathrm{e}^{-\frac{\mathrm{I}}{2} \pi \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} e x)^{2}} \mathrm{e}^{-\frac{\mathrm{I}}{2} \pi \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)^{2}} \mathrm{e}^{\mathrm{I} c}\right)$
$-\frac{1}{a e n d^{2} \sqrt{-\mathrm{e}^{2 \mathrm{I} c} b^{2}+\mathrm{e}^{2 \mathrm{I} c} a^{2}}}\left(\mathrm{I} b\left(e^{n}\right)^{2} \sqrt{(-1)^{\operatorname{csgn}(\mathrm{I} e x)^{3}}}(-1)^{\frac{\operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)}{2}} \operatorname{dilog}\left(\frac{\mathrm{I} \mathrm{e}^{\mathrm{I} c} b}{\mathrm{I} \mathrm{e}^{\mathrm{I} c} b+\sqrt{-\mathrm{e}^{2 \mathrm{I} c} b^{2}+\mathrm{e}^{2 \mathrm{I} c} a^{2}}}\right.\right.$
$\left.+\frac{a \mathrm{e}^{\mathrm{I}\left(d x^{n}+2 c\right)}}{\mathrm{Ie}^{\mathrm{I} c} b+\sqrt{-\mathrm{e}^{2 \mathrm{I} c} b^{2}+\mathrm{e}^{2 \mathrm{I} c} a^{2}}}+\frac{\sqrt{-\mathrm{e}^{2 \mathrm{I} c} b^{2}+\mathrm{e}^{2 \mathrm{I} c} a^{2}}}{\mathrm{I}^{\mathrm{I} c} b+\sqrt{-\mathrm{e}^{2 \mathrm{I} c} b^{2}+\mathrm{e}^{2 \mathrm{I} c} a^{2}}}\right)$
$\left.\mathrm{e}^{-\mathrm{I} \pi n \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)} \mathrm{e}^{\mathrm{I} \pi n \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} e x)^{2}} \mathrm{e}^{\mathrm{I} \pi n \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)^{2}} \mathrm{e}^{-\mathrm{I} \pi n \operatorname{csgn}(\mathrm{I} e x)^{3}} \mathrm{e}^{-\frac{\mathrm{I}}{2} \pi \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} e x)^{2}} \mathrm{e}^{-\frac{\mathrm{I}}{2} \pi \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)^{2}} \mathrm{e}^{\mathrm{I} c}\right)$

Problem 25: Unable to integrate problem.

$$
\int \frac{(e x)^{-1+3 n}}{a+b \csc \left(c+d x^{n}\right)} \mathrm{d} x
$$

Optimal(type 4, 459 leaves, 14 steps):

Result(type 8, 172 leaves):
$x \mathrm{e}^{(-1+3 n)\left(\ln (e)+\ln (x)-\frac{\mathrm{I} \pi \operatorname{csgn}(\mathrm{I} e x)(-\operatorname{csgn}(\mathrm{I} e x)+\operatorname{csgn}(\mathrm{I} e))(-\operatorname{csgn}(I e x)+\operatorname{csgn}(\mathrm{I} x))}{2}\right)}$
$x \mathrm{e}$

$$
\int \frac{-2 \mathrm{I} b \mathrm{e}^{(-1+3 n)\left(\ln (e)+\ln (x)-\frac{\mathrm{I} \pi \operatorname{csgn}(\mathrm{I} e x)(-\operatorname{csgn}(\mathrm{I} e x)+\operatorname{csgn}(\mathrm{I} e))(-\operatorname{csgn}(\mathrm{I} e x)+\operatorname{csgn}(\mathrm{I} x))}{2}\right)} \mathrm{e}^{\mathrm{I}(c+d \mathrm{e} \ln (x) n)}}{a\left(2 \mathrm{I} b \mathrm{e}^{\mathrm{I}(c+d \mathrm{e} \ln (x) n)}+a\left(\mathrm{e}^{\mathrm{I}(c+d \mathrm{e} \ln (x) n)}\right)^{2}-a\right)} \mathrm{d} x
$$

Test results for the 10 problems in "4.6.3.1 ($\mathrm{a}+\mathrm{b} \csc)^{\wedge} \mathrm{m}(\mathrm{d} \csc)^{\wedge} \mathrm{n}(\mathrm{A}+\mathrm{B} \csc) . t \mathrm{tx}$ "
Problem 8: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+a \csc (d x+c))(A-A \csc (d x+c))}{\csc (d x+c)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 15 leaves, 3 steps):

$$
\frac{a A \cos (d x+c)^{3}}{3 d}
$$

Result(type 3, 34 leaves):

$$
\frac{-\frac{A a\left(2+\sin (d x+c)^{2}\right) \cos (d x+c)}{3}+\cos (d x+c) A a}{d}
$$

Test results for the 1 problems in "4.6.4.2 (a+b csc) ${ }^{\wedge} m(d \csc)^{\wedge} n(A+B \csc +C \csc 2) . t x t "$
Test results for the 10 problems in "4.6.7 (d trig) ^m (a+b (c csc) ^n) ^p.txt"
Problem 3: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(a+b \csc (d x+c)^{2}\right)^{3}} d x
$$

Optimal(type 3, 130 leaves, 6 steps):

$$
\frac{x}{a^{3}}+\frac{b \cot (d x+c)}{4 a(a+b) d\left(a+b+b \cot (d x+c)^{2}\right)^{2}}+\frac{b(7 a+4 b) \cot (d x+c)}{8 a^{2}(a+b)^{2} d\left(a+b+b \cot (d x+c)^{2}\right)}+\frac{\left(15 a^{2}+20 b a+8 b^{2}\right) \arctan \left(\frac{\cot (d x+c) \sqrt{b}}{\sqrt{a+b}} \sqrt{b}\right.}{8 a^{3}(a+b)^{5 / 2} d}
$$

Result (type 3, 362 leaves):
$\frac{\arctan (\tan (d x+c))}{d a^{3}}+\frac{9 b \tan (d x+c)^{3}}{8 d a\left(a \tan (d x+c)^{2}+\tan (d x+c)^{2} b+b\right)^{2}(a+b)}+\frac{b^{2} \tan (d x+c)^{3}}{2 d a^{2}\left(a \tan (d x+c)^{2}+\tan (d x+c)^{2} b+b\right)^{2}(a+b)}$

$$
+\frac{7 b^{2} \tan (d x+c)}{8 d a\left(a \tan (d x+c)^{2}+\tan (d x+c)^{2} b+b\right)^{2}\left(a^{2}+2 b a+b^{2}\right)}+\frac{b^{3} \tan (d x+c)}{2 d a^{2}\left(a \tan (d x+c)^{2}+\tan (d x+c)^{2} b+b\right)^{2}\left(a^{2}+2 b a+b^{2}\right)}
$$

$$
-\frac{15 b \arctan \left(\frac{\tan (d x+c)(a+b)}{\sqrt{(a+b) b}}\right)}{8 d a\left(a^{2}+2 b a+b^{2}\right) \sqrt{(a+b) b}}-\frac{5 b^{2} \arctan \left(\frac{\tan (d x+c)(a+b)}{\sqrt{(a+b) b})}\right.}{2 d a^{2}\left(a^{2}+2 b a+b^{2}\right) \sqrt{(a+b) b}}-\frac{b^{3} \arctan \left(\frac{\tan (d x+c)(a+b)}{\sqrt{(a+b) b}}\right)}{d a^{3}\left(a^{2}+2 b a+b^{2}\right) \sqrt{(a+b) b}}
$$

Problem 4: Result more than twice size of optimal antiderivative.

$$
\int\left(a+b \csc (d x+c)^{2}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 101 leaves, 7 steps):

$$
-\frac{a^{3 / 2} \arctan \left(\frac{\cot (d x+c) \sqrt{a}}{\sqrt{a+b+b \cot (d x+c)^{2}}}\right)}{d}-\frac{(3 a+b) \operatorname{arctanh}\left(\frac{\cot (d x+c) \sqrt{b}}{\sqrt{a+b+b \cot (d x+c)^{2}}}\right) \sqrt{b}}{2 d}-\frac{b \cot (d x+c) \sqrt{a+b+b \cot (d x+c)^{2}}}{2 d}
$$

Result(type 3, 1285 leaves):

$$
\begin{aligned}
-\frac{1}{4 d \sqrt{-a} \sin (d x+c)^{3}\left(-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}\right)^{3 / 2}}\left((\frac { \operatorname { c o s } (d x + c) ^ { 2 } a - a - b } { \operatorname { c o s } (d x + c) ^ { 2 } - 1 }) ^ { 3 / 2 } (- 1 + \operatorname { c o s } (d x + c)) ^ { 2 } \left(b^{3 / 2} \cos (d x+c) \sqrt{-a} \ln (\right.\right. \\
-\frac{2(-1+\cos (d x+c))\left(\sqrt{b} \cos (d x+c) \sqrt{-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}}+\sqrt{-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}} \sqrt{b}+a \cos (d x+c)+a+b\right)}{\sqrt{b} \sin (d x+c)^{2}}
\end{aligned}
$$

$$
-b^{3 / 2} \cos (d x+c) \sqrt{-a} \ln \left(-\frac{4\left(\sqrt{b} \cos (d x+c) \sqrt{-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}}+\sqrt{-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}} \sqrt{b}-a \cos (d x+c)+a+b\right)}{-1+\cos (d x+c)}\right)
$$

$$
-b^{3 / 2} \ln (
$$

$$
\left.-\frac{2(-1+\cos (d x+c))\left(\sqrt{b} \cos (d x+c) \sqrt{-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}}+\sqrt{-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}} \sqrt{b}+a \cos (d x+c)+a+b\right)}{\sqrt{b} \sin (d x+c)^{2}}\right) \sqrt{-a}
$$

$$
+b^{3} / 2 \ln \left(-\frac{4\left(\sqrt{b} \cos (d x+c) \sqrt{-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}}+\sqrt{-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}} \sqrt{b}-a \cos (d x+c)+a+b\right)}{-1+\cos (d x+c)}\right) \sqrt{-a}+3 \sqrt{b} \cos (d x
$$

$$
+c) \sqrt{-a} \ln
$$

$$
\left.-\frac{2(-1+\cos (d x+c))\left(\sqrt{b} \cos (d x+c) \sqrt{-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}}+\sqrt{-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}} \sqrt{b}+a \cos (d x+c)+a+b\right)}{\sqrt{b} \sin (d x+c)^{2}}\right) a
$$

$$
-3 \sqrt{b} \cos (d x+c) \sqrt{-a} \ln \left(-\frac{4\left(\sqrt{b} \cos (d x+c) \sqrt{-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}}+\sqrt{-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}} \sqrt{b}-a \cos (d x+c)+a+b\right)}{-1+\cos (d x+c)}\right) a
$$

$$
-3 \sqrt{b} \ln (
$$

$$
\left.-\frac{2(-1+\cos (d x+c))\left(\sqrt{b} \cos (d x+c) \sqrt{-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}}+\sqrt{-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}} \sqrt{b}+a \cos (d x+c)+a+b\right)}{\sqrt{b} \sin (d x+c)^{2}}\right) a \sqrt{-a}
$$

$$
+3 \sqrt{b} \ln \left(-\frac{4\left(\sqrt{b} \cos (d x+c) \sqrt{-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}}+\sqrt{-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}} \sqrt{b}-a \cos (d x+c)+a+b\right)}{-1+\cos (d x+c)}\right) a \sqrt{-a}+2 \cos (d x
$$

$$
+c) \sqrt{-a} \sqrt{-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}} b-4 \cos (d x+c) \ln \left(4 \cos (d x+c) \sqrt{-a} \sqrt{-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}}-4 a \cos (d x+c)\right.
$$

$$
\begin{aligned}
& \left.+4 \sqrt{-a} \sqrt{-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}}\right) a^{2}+4 a^{2} \ln \left(4 \cos (d x+c) \sqrt{-a} \sqrt{-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}}-4 a \cos (d x+c)\right. \\
& \left.\left.\left.+4 \sqrt{-a} \sqrt{-\frac{\cos (d x+c)^{2} a-a-b}{(\cos (d x+c)+1)^{2}}}\right)\right)\right)
\end{aligned}
$$

Problem 5: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(a+b \csc (d x+c)^{2}\right)^{7 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 162 leaves, 7 steps):

$$
\begin{aligned}
& -\frac{\arctan \left(\frac{\cot (d x+c) \sqrt{a}}{\sqrt{a+b+b \cot (d x+c)^{2}}}\right)}{a^{7 / 2} d}+\frac{b \cot (d x+c)}{5 a(a+b) d\left(a+b+b \cot (d x+c)^{2}\right)^{5 / 2}}+\frac{b(9 a+5 b) \cot (d x+c)}{15 a^{2}(a+b)^{2} d\left(a+b+b \cot (d x+c)^{2}\right)^{3 / 2}} \\
& \quad+\frac{b\left(33 a^{2}+40 b a+15 b^{2}\right) \cot (d x+c)}{15 a^{3}(a+b)^{3} d \sqrt{a+b+b \cot (d x+c)^{2}}}
\end{aligned}
$$

Result(type ?, 4814 leaves): Display of huge result suppressed!
Problem 6: Result more than twice size of optimal antiderivative.

$$
\int\left(1+\csc (x)^{2}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 37 leaves, 6 steps):

$$
-2 \operatorname{arcsinh}\left(\frac{\cot (x) \sqrt{2}}{2}\right)-\arctan \left(\frac{\cot (x)}{\sqrt{2+\cot (x)^{2}}}\right)-\frac{\cot (x) \sqrt{2+\cot (x)^{2}}}{2}
$$

Result(type 3, 311 leaves):
$-\frac{1}{2 \sin (x)^{3}\left(-\frac{\cos (x)^{2}-2}{(\cos (x)+1)^{2}}\right)^{3 / 2}}\left(\frac{\cos (x)^{2}-2}{\cos (x)^{2}-1}\right)^{3 / 2}(-1+\cos (x))^{2}\left(\cos (x) \sqrt{-\frac{\cos (x)^{2}-2}{(\cos (x)+1)^{2}}}+2 \cos (x) \ln (\right.$

$$
\left.-\frac{2\left(\cos (x)^{2} \sqrt{-\frac{\cos (x)^{2}-2}{(\cos (x)+1)^{2}}}+\cos (x)^{2}+\cos (x)-\sqrt{-\frac{\cos (x)^{2}-2}{(\cos (x)+1)^{2}}}-2\right)}{\sin (x)^{2}}\right)-2 \cos (x) \operatorname{arctanh}\left(\frac{\cos (x)^{2}-3 \cos (x)+2}{\sqrt{-\frac{\cos (x)^{2}-2}{(\cos (x)+1)^{2}}} \sin (x)^{2}}\right)
$$

$+2 \cos (x) \arctan \left(\frac{\cos (x)(-1+\cos (x))}{\sqrt{-\frac{\cos (x)^{2}-2}{(\cos (x)+1)^{2}} \sin (x)^{2}}}\right)-2 \ln \left(-\frac{2\left(\cos (x)^{2} \sqrt{-\frac{\cos (x)^{2}-2}{(\cos (x)+1)^{2}}}+\cos (x)^{2}+\cos (x)-\sqrt{\left.-\frac{\cos (x)^{2}-2}{(\cos (x)+1)^{2}}-2\right)}\right.}{\sin (x)^{2}}\right)$
$\left.\left.+2 \operatorname{arctanh}\left(\frac{\cos (x)^{2}-3 \cos (x)+2}{\sqrt{-\frac{\cos (x)^{2}-2}{(\cos (x)+1)^{2}}} \sin (x)^{2}}\right)-2 \arctan \left(\frac{\cos (x)(-1+\cos (x))}{\sqrt{-\frac{\cos (x)^{2}-2}{(\cos (x)+1)^{2}}} \sin (x)^{2}}\right)\right)\right)$

Problem 7: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{1+\csc (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 25 leaves, 5 steps):

$$
-\operatorname{arcsinh}\left(\frac{\cot (x) \sqrt{2}}{2}\right)-\arctan \left(\frac{\cot (x)}{\sqrt{2+\cot (x)^{2}}}\right)
$$

Result(type 3, 165 leaves):
$-\frac{1}{4 \sin (x) \sqrt{-\frac{\cos (x)^{2}-2}{(\cos (x)+1)^{2}}}}\left(\sqrt{4} \sqrt{\frac{\cos (x)^{2}-2}{\cos (x)^{2}-1}}(-1+\cos (x))\right) \ln ($

$$
\left.-\frac{2\left(\cos (x)^{2} \sqrt{-\frac{\cos (x)^{2}-2}{(\cos (x)+1)^{2}}}+\cos (x)^{2}+\cos (x)-\sqrt{-\frac{\cos (x)^{2}-2}{(\cos (x)+1)^{2}}}-2\right)}{\sin (x)^{2}}\right)-\operatorname{arctanh}\left(\frac{\cos (x)^{2}-3 \cos (x)+2}{\sqrt{-\frac{\cos (x)^{2}-2}{(\cos (x)+1)^{2}}} \sin (x)^{2}}\right)
$$

$$
\left.+2 \arctan \left(\frac{\cos (x)(-1+\cos (x))}{\sqrt{-\frac{\cos (x)^{2}-2}{(\cos (x)+1)^{2}}} \sin (x)^{2}}\right)\right)
$$

Problem 8: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{1+\csc (x)^{2}}} d x
$$

Optimal(type 3, 14 leaves, 3 steps):

$$
-\arctan \left(\frac{\cot (x)}{\sqrt{2+\cot (x)^{2}}}\right)
$$

Result(type 3, 71 leaves):

$$
-\frac{\sin (x) \sqrt{-\frac{\cos (x)^{2}-2}{(\cos (x)+1)^{2}}} \arctan \left(\frac{\cos (x)(-1+\cos (x))}{\sqrt{-\frac{\cos (x)^{2}-2}{(\cos (x)+1)^{2}}} \sin (x)^{2}}\right)}{\sqrt{\frac{\cos (x)^{2}-2}{\cos (x)^{2}-1}}(-1+\cos (x))}
$$

Problem 9: Result more than twice size of optimal antiderivative.

$$
\int\left(1-\csc (x)^{2}\right)^{3 / 2} d x
$$

Optimal(type 3, 27 leaves, 4 steps):

$$
\frac{\cot (x) \sqrt{-\cot (x)^{2}}}{2}+\ln (\sin (x)) \sqrt{-\cot (x)^{2}} \tan (x)
$$

Result(type 3, 88 leaves):
$-\frac{1}{8 \cos (x)^{3}}\left(\left(4 \cos (x)^{2} \ln \left(\frac{2}{\cos (x)+1}\right)-4 \cos (x)^{2} \ln \left(-\frac{-1+\cos (x)}{\sin (x)}\right)+\cos (x)^{2}-4 \ln \left(\frac{2}{\cos (x)+1}\right)+4 \ln \left(-\frac{-1+\cos (x)}{\sin (x)}\right)\right.\right.$ $\left.+1) \sqrt{4} \sin (x)\left(\frac{\cos (x)^{2}}{\cos (x)^{2}-1}\right)^{3 / 2}\right)$

Problem 10: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{-1+\csc (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 12 leaves, 3 steps):

$$
\ln (\sin (x)) \sqrt{\cot (x)^{2}} \tan (x)
$$

Result(type 3, 50 leaves):

$$
-\frac{\sqrt{4}\left(\ln \left(\frac{2}{\cos (x)+1}\right)-\ln \left(-\frac{-1+\cos (x)}{\sin (x)}\right)\right) \sin (x) \sqrt{-\frac{\cos (x)^{2}}{\cos (x)^{2}-1}}}{2 \cos (x)}
$$

104 integration problems

A - 55 optimal antiderivatives
B - 32 more than twice size of optimal antiderivatives
C - O unnecessarily complex antiderivatives
D - 17 unable to integrate problems
E - O integration timeouts

